Saturday, March 16, 2013

A Cold Day in E-Commerce - Guest Post


This guest post appears courtesy of one of my team mates, Jonathan Spruill, and shows some of the extremely cool work we get to do in our Incident Response practice at Trustwave's SpiderLabs.

Recently an investigation led me to research the vulnerability described in the following CVEs: CVE-2013-0625, CVE-2013-0629, CVE-2013-0631, and CVE-2013-0632.  From the Adobe Security Bulletin  (http://www.adobe.com/support/security/bulletins/apsb13-03.html): “vulnerabilities that could permit an unauthorized user to remotely circumvent authentication controls, potentially allowing the attacker to take control of the affected server”.  This sounds particularly ominous and in a moment we will see just how damaging the attack was in this case.  As with most e-Commerce cases, this investigation relied very heavily on the review of web access logs.  Using basic tools to analyze the log files, I quickly found the entries where the compromise occurred. 





Here the attacker checked to see if the site has been compromised already.  I found this source: https://www.it.cornell.edu/services/alert.cfm?id=2419&back=security
which indicated that h.cfm, help.cfm and others were variations of the name used for a webshell in this attack.


Here the attacker accessed the page at the heart of this exploit.  By accessing the administrator.cfc page using with the specific options, the server returned the base64 encoded version of the administrator password hash.


The attacker then passed this encoded and hashed password back to the server.  The server allowed access to the mappings.cfm page without complaint.  I was puzzled for a bit as to why the attacker would go directly to this page.  In recreating the exploit, I discovered that this page holds the path information the attacker would need to know in order to upload his malicious files.


The attacker accessed the page sheduleedit.cfm and created the task which would upload the malicious files.


In this step of the attack we presume the attacker has generated the task to upload the webshell.  We must presume this is the case as there is no record of the successful task creation in the web access logs, or any other log for that matter.  By default, there is no logging enabled for scheduled tasks.


An interesting feature of these scheduled tasks is that they can be run either on a time schedule or launched directly.  ColdFusion can be configured to use these tasks to generate web content from static data sources.   However, an attacker can arbitrarily load any file from any location.  In this case the file uploaded was a webshell.


Here the attacker forced the newly created task to run.


And in the next transaction, the attacker deleted the task.  This very effectively covered his tracks within the ColdFusion management interface, since, as mentioned previously, logging of scheduled tasks is not enabled by default.
   

The last step in this sequence, the attacker accessed the newly uploaded webshell.  In the postmortem analysis of the site’s codebase, I was able to find and further examine the webshell. 

The webshell was not encoded or obfuscated as we typically see in our investigations.  It includes a fair bit of functionality: upload and download files, search for filename or file content, and issue SQL queries.  If you are interested in the code used in the webshell, I found a copy on pastebin: http://pastebin.com/2v3PMx4M

The conclusion of the investigation showed a customized database scraping script was uploaded and successfully downloaded a significant amount of card holder data.

Not quite satisfied with seeing the attack in the logs, I wanted to further understand how this exploit worked.  I was able to duplicate the attack in a test environment using a browser and with the help of my new favorite proxy tool, ZAP from OWASP, I could see in better detail the key data elements passed from browser to server and back again.  I couldn’t help but feel that this was still not a best representation of the attack seen in the logs.  I first searched all the typical places for a proof of concept to try in my test environment.  I exhausted my Google-Fu with no success. Left with no other option I decided I would write it myself. 

So why would a forensics guy want to write an exploit?  First, like folks who climb Mt. Everest, because it’s there.  Second, since I couldn’t find an example of the exploit code, I wanted to see if there was something else that could be learned and identified as an Indicator of Compromise (IOC) for future investigations.  Third, it gave me the opportunity to work on my scripting skills and learn a few things along the way.

Rather than post the script itself for all the kiddies to sponge up, here's a video demo of the exploit against a default install of ColdFusion 9.0.2.




The script duplicates the most important behavior in this attack, which is the POST request to scheduleedit.cfm, forcing a task to run, followed by immediately deleting the task.  These IOCs along with unusual filenames, such as h.cfm, a.cfm,  help.cfm or similar files in the /CFIDE directory should cause any web administrator to investigate their logs more closely.  An interesting IOC missing from this attack is directory traversal as seen in other ColdFusion exploits. 

As for mitigating the vulnerabilities, Adobe recommends setting a password for the RDS user account, preventing access to the CFIDE path, and applying the patch per APBS13-03.  In my testing, setting the RDS password was sufficient to prevent this attack.

5 comments:

  1. Can you share any details regarding the database scraping tool that was uploaded? I would like to investigate for evidence of it being used. Thank you

    ReplyDelete
  2. The database scraping was done with just a few lines of ColdFusion code. The scraping file queried the database for cardholder data, decrypted it using the victim's own crypto function, and printed it. The scraper was uploaded to the same /CFIDE directory as the webshell.

    ReplyDelete
  3. Interesting. Was there a particular naming convention used (wondering if it may be the same given that similar named webshells were used across the board)?

    ReplyDelete
  4. Hi Jon!

    Why you doesn't publish this exploit?

    I'm an professional pentester and I will not used this exploit for the crime.

    ReplyDelete
  5. Hi,

    There really isn't a reason to publish the code I wrote for this investigation as there is a Metasploit module covering this attack that was released about one month after this post.

    ReplyDelete